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NETWORK MODELING/ANALYSIS: 



APPLICATIONS OF 
NETWORK OPTIMIZATION 
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APPLICATIONS 
PHYSICAL ANALOG 

OF NODES  
PHYSICAL ANALOG 

OF ARCS 
FLOW 

Communication 
systems 

phone exchanges,  
computers,  
transmission 
facilities, satellites  

Cables, fiber optic  
links, microwave  
relay links  

Voice messages,  
Data,  
Video transmissions 

Hydraulic systems 
Pumping stations 
Reservoirs, Lakes 

Pipelines 
Water, Gas, Oil, 
Hydraulic fluids 

Integrated  
computer circuits 

Gates, registers, 
processors 

Wires Electrical current 

Mechanical systems Joints 
Rods, Beams,  
Springs 

Heat, Energy 

Transportation 
systems 

Intersections,  
Airports, 
Rail yards 

Highways, 
Airline routes  
Railbeds 

Passengers,  
freight, 
vehicles,  
operators  



NETWORKS ARE 
EVERYWHERE 

 Physical Networks 
 Road Networks 

 Railway Networks 

 Airline traffic Networks 

 Electrical networks, e.g., the power grid 

 Abstract networks 
 organizational charts 

 precedence relationships in projects 

 Others? 

 



NETWORKS ANALYSIS: 
DESCRIPTION 

Many important optimization problems can be 
analyzed by means of graphical or network 
representation. The following network models will be 
discussed: 
 
1. Minimum spanning tree problems 
2. Shortest path problems 
3. Maximum flow problems 



A spanning tree of a graph is just a sub-graph that 
contains all the vertices and is a tree. 

A graph may have many spanning trees. 

or or or 

Some Spanning Trees from Graph A Graph 
A 

SPANNING TREES 



All 16 of its Spanning Trees Complete 
Graph 



MINIMUM SPANNING TREES 

The Minimum Spanning Tree for a given graph is the Spanning 
Tree of minimum cost for that graph. 
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ALGORITHMS FOR OBTAINING THE MINIMUM 
SPANNING TREE: KRUSKAL'S ALGORITHM 

 This algorithm creates a forest of trees. Initially the 

forest consists of ‘n’ single node trees (and no 

edges). At each step, we add one edge (the 

cheapest one) so that it joins two trees together.  

 

 If it were to form a cycle, it would simply link two 

nodes that were already part of a single connected 

tree, so that this edge would not be needed. 



The steps are: 
 
1. The forest is constructed – with each node in a separate 

tree. 
2. The edges are placed in a priority queue. 
3. Until we've added ‘n–1’ edges, 

a. Extract the cheapest edge from the queue, 
b. If it forms a cycle, reject it, 
c. Else add it to the forest. Adding it to the forest will 

join two trees together. 
 
Every step will have joined two trees in the forest together, so 
that at the end, there will only be one tree in ‘T’. 

KRUSKAL'S ALGORITHM 
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visualize) 
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SHORTEST PATH 
PROBLEM:  

FLOYD’S ALGORITHM 



FLOYD’S ALGORITHM 
Use to find the shortest path between any two nodes 
in the network. 

• Floyd’s algorithm represents an ‘n’ node network as a 
square matrix with ‘n’ rows and ‘n’ columns.  

 

• Where: 

 Dn = [ dij ]  and    Sn = Matrix of the node – 
Sequence  

 

• For matrix Dn: Entry (i, j) of the matrix gives the 
distance dij from node – ‘i’ to node – ‘j’, which is finite 
if ‘i’ is linked directly to ‘j’, and infinite otherwise. 



FLOYD’S ALGORITHM 

IDEA OF FLOYD’S ALGORITHM: 

 Let three nodes i, j, and k shown in the below figure with the 
connecting distances shown on the three arcs, it is shorter to 
reach ‘k’ from ‘i’ passing through ‘j’ if: 

dij + djk ≤ dik  

i k 

j 
dij djk 

dik 

Here, it is optimal to replace the direct route from i  k 
with the indirect route i  j  k.  

(This is called TRIPLE OPERATION.) 

Pivot 



FLOYD’S ALGORITHM 

Step–0: Define the starting distance matrix D0 and node 

sequence matrix S0 as given subsequently. The diagonal 
elements are marked with ( – ) to indicates that they are 
blocked. Set k = 1. 

General Step – k:  Define row ‘k’ and column ‘k’ as pivot 

row and pivot column. Apply the triple operation to each 
element dij in D(k – 1), for all i  and j. if the condition  

                        dij + djk ≤ dik  , ( i ≠ k, j ≠ k, and i ≠ j ) 

     is satisfied, make the following changes: 

a) Create Dk by replacing dij in D(k – 1) with dik + dkj. 

b) Create Sk by replacing sij in S(k – 1) with k. Set k = k+1, 
and repeat Step – k. 



EXAMPLE: 
 Determine the shortest routes with their distances between 

node–1 & node–5. Also between node–2 & node–3 using 
Floyd’s algorithm. 
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SOLUTION: 
ITERATION – 0: 

 

 

 

 

D0 = 

 

 

 

1 2 3 4 5  

 

 

 

, S0 =  

1 2 3 4 5 

1  –   3 10 ∞ ∞ 1 – 2 3 4 5 

2 3 – ∞ 5 ∞ 2 1 – 3 4 5 

3 10 ∞ – 6 15 3 1 2 – 4 5 

4 ∞ 5 6 – 4 4 1 2 3 –  5 

5 ∞ ∞ ∞ 4 – 5 1 2 3 4 – 



ITERATION – 1: 

• Set k = 1, thus PIVOT column – 1 and row – 1. 

 

• Improvements can be made for d23 and d32. 

1.Replace d23 by d21 + d13 = 3 + 10 = 13 & Set 
S23 = 1. 

2.Replace d32 by d31 + d12 = 10 + 3 = 13 & Set 
S32 = 1. 



 

 

 

 

D1 = 

 

 

 

1 2 3 4 5  

 

 

 

, S1 =  

1 2 3 4 5 

1  –   3 10 ∞ ∞ 1 – 2 3 4 5 

2 3 – 13 5 ∞ 2 1 – 1 4 5 

3 10 13 – 6 15 3 1 1 – 4 5 

4 ∞ 5 6 – 4 4 1 2 3 –  5 

5 ∞ ∞ ∞ 4 – 5 1 2 3 4 – 



ITERATION – 2: 

   

• Set k = 2, thus PIVOT column – 2 and row – 2. 

 

• Improvements can be made for d14 and d41. 

1. Replace d14 by d12 + d24 = 3 + 5 = 8 & Set S14 = 2. 

2. Replace d41 by d42 + d21 = 5 + 3 = 8 & Set S41 = 2. 

 

 

 



 

 

 

 

D2 = 

 

 

 

1 2 3 4 5  

 

 

 

, S2 =  

1 2 3 4 5 

1  –   3 10 8 ∞ 1 – 2 3 2 5 

2 3 – 13 5 ∞ 2 1 – 1 4 5 

3 10 13 – 6 15 3 1 1 – 4 5 

4 8 5 6 – 4 4 2 2 3 –  5 

5 ∞ ∞ ∞ 4 – 5 1 2 3 4 – 



ITERATION – 3: 

   

• Set k = 3, thus PIVOT column – 3 and row – 3. 

• Improvements can be made for d15 and d25. 

1.Replace d15 by d13 + d35 = 10 + 15 = 25 & Set 
S15 = 3. 

2.Replace d25 by d23 + d35 = 13 + 15 = 28 & Set 
S25 = 3. 



 

 

 

 

D3 = 

 

 

 

1 2 3 4 5  

 

 

 

, S3 =  

1 2 3 4 5 

1  –   3 10 8 25 1 – 2 3 2 3 

2 3 – 13 5 28 2 1 – 1 4 3 

3 10 13 – 6 15 3 1 1 – 4 5 

4 8 5 6 – 4 4 2 2 3 –  5 

5 ∞ ∞ ∞ 4 – 5 1 2 3 4 – 



ITERATION – 4: 

•   Set k = 4, thus PIVOT column – 4 and row – 4. 

• Improvements can be made for d25, d52, d23, d32, d35, d53, d15 
and d51. 

1. Replace d25 by d24 + d45 = 5 + 4 = 9 & Set S25 = 4. 

2. Replace d52 by d54 + d42 = 4 + 5 = 9 & Set S52 = 4. 

3. Replace d23 by d24 + d43 = 5 + 6 = 11 & Set S23 = 4. 

4. Replace d32 by d34 + d42 = 6 + 5 = 11 & Set S32 = 4. 

5.  Replace d35 by d34 + d45 = 6 + 4 = 10 & Set S35 = 4. 

6. Replace d53 by d54 + d43 = 4 + 6 = 10 & Set S53 = 4. 

7. Replace d15 by d14 + d45 = 8 + 4 = 12 & Set S15 = 4. 

8. Replace d51 by d54 + d41 = 4 + 8 = 12 & Set S51 = 4. 



 

 

 

 

D4 = 

 

 

 

1 2 3 4 5  

 

 

 

, S4 =  

1 2 3 4 5 

1  –   3 10 8 12 1 – 2 3 2 4 

2 3 – 11 5 9 2 1 – 4 4 4 

3 10 11 – 6 10 3 1 4 – 4 4 

4 8 5 6 – 4 4 2 2 3 –  5 

5 12 9 10 4 – 5 4 4 4 4 – 



ITERATION – 5: 

• Set k = 5, thus PIVOT column–5 and row–5. 

• No further Improvements are possible thus:  

 

1. d15 = 12 ROUTE = 1  2  4  5 

 “ Route is 1  5 if S15 = 5 but S15 = 4. So, Route is 1  4  5 if       

       S14 = 4 but  = 2. So, Route is 1  2  4  5 if S12 = 2.” 

 

2. Route Node – 2 to Node – 3 is: 2  4  3 

 “ Route is 2  4 if S24 = 4. Route is 4  3 if S43 = 3. So, Route from node 
– 2 to node – 3 is:     2  4  3 



MAXIMUM FLOW 
ALGORITHM 



MAXIMUM FLOW ALGORITHM 

NOTATIONS: 

 

Cij = Initial capacity of arc from node ‘ i ’ to node ‘ j ’. 

 

Cji = Initial capacity of arc from node ‘ j ’ to node ‘ i ’. 

 

Cij = Residual capacity of arc from node ‘ i ’ to node ‘ j ’. 

 

Cji = Residual capacity of arc from node ‘ j ’ to node ‘ i ’. 

 

[ aj , i ] = Denotes that aj amount of flow is received at node ‘ 
j’ from node ‘ i ’. 

 



MAXIMUM FLOW ALGORITHM 
Step_1: Set a1= ∞, then label node_1 as [∞, -]. 

 

Step_2: Si=Set of unlabelled nodes ‘ j ’ directly connected to node           

‘ i ’ , with positive capacity i.e.: Cij>0. 

 

Step_3: Determine Cik = Max   { Cij } 
 

For Example: 

 

j ε Si 

1 
3 

2 

4 

[∞, -] 

5 

10 

8 

[10,1] 

S1 = { 2,3,4} 

Max = { C12,C13,C14} 

        = C13 

Thus, ak = Cik, label node_k {ak,i}  

Set i = k, go to step_2. 



MAXIMUM FLOW ALGORITHM 
Step_4: (BACKTRACKING)  

 If Si=Φ in step_2 and ‘ i ’ is not the source node then backtrack to node ‘ 
r ’ that cause lead the node ‘ i ’ in that iteration.   

Step_5: (Determination of Residual network) 

  Np = Set of nodes involved in determined path in pth iteration. 

  fp = Min { a1,ak1,ak2, - - -, an} 

  fp = Amount of flow in pth iteration then we revise the network. 

 

a) (Cij – fp , Cji + fp) if flow is from node ‘ i ’ to node ‘ j ’. 

b) (CjI + fp , Cji - fp) if flow is from node ‘ j ’ to node ‘ i ’. 

    

 Reinstate any node which is removed in step_4 and make the next 
iteration. 

Step_6: (Solution) : 

     Maximum flow = f1+f2+ - - - +fm 

    (Where ‘m’ is the number of iterations) 



EXAMPLE: 

Consider the following bidirected network:  

1 

2 

3 

4 

Determine the maximal flow from source node to sink node. 
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SOLUTION: 

Iteration_1: - 

1 

2 

3 

4 

5 

6 

7 

7 
5 0 

0 
6 

0 [∞ , -] [7 , 1] 

[5 , 3] 

[6 , 6] 

f1 = 5 

Now, We develop the Residual network from the 
above network --- 



RESIDUAL NETWORK: 

1 

2 

3 

4 

5 

6 

7 7 – 5 = 2 
4 

4 

0 

1  

3 

0 + 5 = 5 

0 

0 

0 

5 1 

2 

4 

0 1 

9 

0 

0 

1 



SOLUTION: 

Iteration_2: - 

1 

2 

3 

4 

5 

6 

7 

0 

5 

3 0 9 

[∞ , -] 

[5 , 1] 

[9 , 5] 

f2 = 3 

Now again, We develop the Residual network from 
the above network --- 

[3 , 2] 

0 



RESIDUAL NETWORK: 
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Solution: 

Iteration_3: - 

1 

2 

3 

4 

5 

6 

7 

0 

4 

3 0 6 

[∞ , -] 

[6 , 5] 

f3 = 4 

Now again, We develop the Residual network from 
the above network --- 

[4 , 1] 

3 

4 0 

5 

[4 , 4] 

0 

4 
[5 , 6] 

[4 , 3] 



RESIDUAL NETWORK: 
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Solution: 
Iteration_4: - 

1 

2 

3 

4 

5 

6 

7 

2 
4 

1 

[∞ , -] 

[1 , 6] 

f4 = 1 

Now again, We develop the Residual network from 
the above network --- 

[4 , 6] 

5 

0 4 

1 

[4 , 3] 

5 

[2 , 1] 



RESIDUAL NETWORK: 

1 

2 

3 

4 

5 

6 

7 

2 

5 + 1 = 6 

1  

3 

0 

2 – 1 = 1 

1 

2 

0 

1 

3 

1 



Solution: 
Iteration_5: - 

1 

2 

3 

4 

5 

6 

7 
2 

3 

1 

[∞ , -] 

[2 , 5] 

f5 = 1 

Now again, We develop the Residual network from 
the above network --- 

[4 , 6] 

7 

0 4 

2 

[3 , 3] 

[2 , 1] 
3 

1 

1 
[1 , 2] 

1 

[1 , 6] 

2 



RESIDUAL NETWORK: 

1 

2 

3 

4 

5 

6 

7 1 6 

1
 –

 1
 =

 0
  

0 
1
 +

 1
 =

2
 

2 

0 

1
 +

 1
 =

 2
 

3 



Solution: 

Iteration_6: - 

1 

2 

3 

4 

5 

6 

7 

1 
2 

[∞ , -] 

[4 , 6] 

0 4 

3 

[2 , 3] 

6 
[1 , 1] 

Now, There is no way to move towards sink node. So, 



SOLUTION: 

 
Maximal Flow = f1 + f2 + f3 + f4 + f5 

     = 5 + 3 + 4 + 1 + 1 

     = 14 

 

Maximal Flow = (Initial capacities of source node) –     
  (Ending capacities of source node) 

     = 16 – 2  

                             =  14 

 

Maximal Flow = Sum of ending capacities of sink node 

      =  8 + 6 

      = 14  



PRACTICE QUESTION 
• Consider the following details of piping network which is used to 

transfer oil. 

 FLOW FLOW 

Arc (i – j) fij fji Arc (i – j) fij fji 

1–2 20 – 3–4 13 – 

1–3 25 – 3–5 10 8 

2–3 5 10 4–5 15 – 

2–4 9 4 4–6 30 – 

2–5 15 – 5–6 25 – 

1. Draw the flow network. 
2. Determine the maximum flow from the Node–1 to 

Node–6. 



QUESTIONS 

58 


